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We express the set of stochastic differential equations which describe fluctuations in linear irreversible
thermodynamics in terms of path integrals. The stochastic terms which are added to the linearized macroscopic
equations have a correlation matrix that is singular, which implies that the straightforward formulation of the
problem in terms of path integrals fails. We therefore begin by constructing a path-integral representation
which is valid whether or not the correlation matrix is singular. We apply this to linearized irreversible
thermodynamics, but the technique is designed to be applicable to more general versions of the theory. The
approach emphasizes the role of the response and correlation functions as basic elements of the theory, and we
calculate these quantities explicitly for the case of density fluctuations in a fluid.
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I. INTRODUCTION keep nonlinear terms in the balance equations. Performing

The study of fluctuations in a thermodynamic context hag@lculations in these more complex theories is not so
a long history dating back to Onsaggl]. A systematic straightforward: if the process is not Markowgn, S|mple_
method of investigating this Subject begins by forming me_forms of the Fokker-Planck equatlon are not available and if
soscopic equations by adding stochastic terms, representifige Langevin equations are nonlinear, systematic approxima-
the fluctuations, to the macroscopic thermodynamic equation procedures need to be developed. In both these cases,
tions. The resulting Langevin-type equations give a descripthe analysis of the theory and explicit calculations can be
tion of the system from which correlation functions and othersimplified by reformulating the Langevin equations as path
quantities of interest can be calculated. The simplest suclitegrals. This is due to the fact that the path-integral formu-
formulation, first investigated by Onsager and Mach|gh lation of non-Markovian processes is not inherently different
consists of linearizing the macroscopic equations about thifom that of Markovian process¢s1,12 and that systematic
equilibrium state and assuming that the stochastic descriptioApproximation schemes in stochastic nonlinear dynamics are
is stationary, Gaussian and Markovian. This gives rise to &equently more simple to formulate in a path-integral con-
consistent theory of fluctuations in linear irreversible thermo{ext [13,14. However, there is a problem: for any theory of
dynamics(LIT). The derivation of the deterministic equa- fluctuations in nonequilibrium thermodynamics Qematrix
tions of this theory is straightforward—the five balanceWwill be singular, due to the fact that the continuity equation
equations for mass, linear momentum and energy arBas no stochastic term associated with it. Since the structure
linearized—but the quantitative description of the stochasti®f the Onsager-Machlup functiongl5], which appears in
terms requires a little more work. Since the process is Gaus$he path-integral representation of stochastic processes, in-
ian and Markovian, and since the deterministic equations argolves Q! in an essential way, the naive prescription for
linear and first order in time, these stochastic terms shoul@btaining the path-integral formulation of nonequilibrium
consist of Gaussian white noise with zero mean. As suchermodynamics cannot be followed.
they will be completely described by a noise correlation ma- In this paper, we describe a procedure for constructing
trix Q,,,a,b=1,...,5. This matrix cannot priori be deter- path integrals when the noise-correlation matrix is singular.
mined from the macroscopic equations, but the assumptiodVe will assume that the system is described by a set of
of Langevin dynamics of the type we have described, lead§ontinuous variablesy(r,t) with r representing position in
to a fluctuation dissipation theore(®DT) which givesQ,, spacet the time, ando=1,...,N labeling the different vari-
in terms of a matrix which does appear in the macroscopi@bles. We will then go on to apply this formalism to LIT
equationg3,4]. Thus all quantities in the theory can be de- whereN=5 and theay(r,t) will have the specific interpreta-
termined, and quantitative predictions can now be made. tions of volume, velocity and temperature fluctuations. Our

Within the past two or three decades this theory has beeimtention is to develop a sufficiently general formalism that it
extended in various ways. For instance, in the formulation ofan cope with the complications of EIT and NLIT, so that it
extended irreversible thermodynami@&T) [5-8] and non- may be extended to these cases in the future. We have also
linear irreversible thermodynami¢®lLIT) [9,10. The sto- tried to make the presentation reasonably self-contained, so
chastic version of the former leads to processes which arthat Sec. Il reviews the standard procedure for constructing
non-Markovian if the original five variables of mass, linear path integrals wheQ is nonsingular, and Sec. Il describes
momentum and energy are ugdd, and the latter attempts to the modifications required whe@ is singular. Technical de-
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tails relevant for both these sections are given in Appendibian is independent @& and as such can be absorbed into the
A. The special case of LIT is discussed in Sec. IV and amormalization ofP[a]. Therefore to findP[a] we only re-
explicit calculation of the response and correlation functiongyuire to substitute Eq2) into Eq. (4):

for the case of density fluctuations in a fluid is given. Details

of this calculation are given in Appendix B. We conclude in Plal ~ exp —= f difalt) + Gl a0~k
Sec. V with a brief review of the paper and plans for future 2] P 4 [8(t) *+ GocBalD(Q Doc
work x[3(0) + GTa(0)]. 5)

In subsequent developments it is easier to work with Fourier

transformed variables. It is shown in Appendix A that in this
Since our main motivation for the work we will describe case Eq(5) becomes

in this section and Sec. Il will be the application to the study 1 do . _

of fluctuations in LIT, we will use a notation which we Pla] ~ exp ——f —al(- w)(B X w)kak(w), (6)

adopted previously when studying this theddj. In this 4J 2m

notation the Langevin-type equations which the set of variynere the matrix(w) is given by

ablesay(r,t) obey are written as
Jay(r,1) B(w) = G(0)QG"(w), (7)
r, ~
al;t - ‘EC: Jdr’Gbc(r,r’)ac(r’,t) +fy(r,t). (1) andG(w)=[-iwl +G] ™%, wherel is the unit matrix.

Since Q is real and symmetricB(w) is Hermitian:

Here the first term on the right-hand side is a result of theé8'(w)=B(w). Using P[a] given by Eq.(6) we can now cal-
linearization of the macroscopic equation about the stationculate quantities of interest, for example the correlation

ary state and(r,t) is a stochastic term that represents thefunction

Il. PATH-INTEGRAL FORMALISM

fluctuations in the system. _ . . (aw)al(- w)) = (@ w)a;™(w))
So our starting point in this section will be equations of
the type(1) which we will write in the form f DgaL(w)a?m(w)exp(— S)
al(t) + GRakt) =fi(t), b,c=1,....N, 2 . (®
where the continuous coordinate labels’ have been re- IDQ exp=5)
placed by the discrete labejsk for convenience and where
the summation convention is assumed. The stochastic terMhere
f{)(t) is taken to have a Gaussian distribution with mean zero 1l (do “1 ik K
and correlator §= 2 ZTab](w)(B (w))heag(w). 9
Loty =2Qkat-t). (3)  The Jacobian and normalization factors have canceled be-

It is cl f Eq.(3) that th tri . din th tween the numerator and the denominator. SiBcis Her-
'Sb(.: ea:jr : rgm g.(3) tha | e matrixQ, v:jewe NN mitian it may be diagonalized by a unitary transformation

combined(j,b) space, is real, symmetric and positive semi-, 4 the Gaussian integred) evaluated in the standard way

definite. In this section we will review the general path- [14] to yield ZBL"Q(w). Of course, in this simple case this

!ntegral formahsm fqr t_he case whe@is nonsmgular, that result may be obtained in a more straightforward manner:
is, detQ # 0—which is in fact the general situation encoun-

tered outside the theory of fluctuating nonequilibrium ther- (@)~ ©)) = Gl )G~ w)(fl(0)f K- »))
modynamics, and was the case originally discussed by On- ; o
sager and MachlupL5]. = Ge(0)2Qh G (- w), (10

Since the stochastic term in E@) is Gaussian, white and ; mk_ \ _ Atk
has zero mean, the corresponding probability distributionWhere we have used E¢B). Smcengk( 0)=Gei o),

functional can be written as (ay(w)a;™(w)) = 2BM(w) (11

~ 1( = _1,jKT K as before.
PLf] ~ exp "2 dtfp(H)(Q nef c(V), (4) The usual result, as quoted in de Groot and Mg,
for example, is given as a correlation function in time. To
wheref=(f1,f2,...) and f'=(f|,f},....fl). To find the make contact with this result, we first note that the use of the
probability density functional for tha is a simple matter: the Fourier representation means that initial conditions were set
first-order differential equatioii2), together with an initial ~ in the infinitely distant past, and so averages are with respect
condition onal(t,), defines the transformation from the func- to a stationary probability distribution: the system is “aged.”

~. ~ H H [ mesr
tions T}, to the functionsa‘é. ThereforeP[a]=P{f}J, whereJ It follows that the required correlation functidag(t)af'(t’))s

~ . . i . _only depends on the combinati¢tr-t’|, andt’ may be set to
=Det(5f/ da) is the Jacobian of the transformation. Since, INZero without loss of generality. The subscris present to

this case, the relatio(®?) betweer?_ anda is linear, the Jaco- remind us that the distribution is stationary. It is then easy to
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verify that this correlation function and the one appearing in o ~ dw
Eq. (11) are Fourier transforms of each other: Pla] ~f Da,Da,...Day epr >
(@va(0)s= f 9 alw)aMwpe ™ X[18h(~ )G Db w)ag(w) - (- ) QhAg(«)].
_ 27T 17)
_( dw lj ik ~mke_ N\ et This version of the path integral is especially useful in non-
- f_w Gt )2QpTre (-~ w)e™. linear theories if a perturbation expansion in the nonlinear
o . . . terms has to be carried out. In this case the terms in the
This integral may be evaluated using the identity exponential in Eq(17) would be the “free part” of the theory
) % e and the non-Gaussian “interacting” terms would be expanded
Glw) = f dp e P9 o), (12)  perturbatively. Finally, we can define new response fields
0 aw)=al(w) (G H(-w), so thatP[a] has the form

Performing thew integration gives the familiar resylL6] do
B f Da;Day...Da}, exp f Z—[iag"(— w)al(w)
i mj T
(a(b)af(0)s= 2 f dp & P*%aQl e (t=0). . o
0 ’ - 8})(- w){GQIH(w)aK(w)]. (18)

(13 Dropping the primes and using the definitiof) of B gives
The result(11) shows thatup to a factor of 2the matrix  the third form forP[a]:
B is the correlation function. The matrig, on the other do
hand, is the response function. To see this let us add an P[a] ~ f D&,Da,...Day expf —[ia4- w)al(w)
external deterministic forc&l(t) to the right-hand side of 27
Eqg. (2). Then we have - al(- 0)B(w)aw)]. (19)
al(w) = GX () (T Kw) + F(w)). Any of the three formg6), (17), or (19) are valid represen-

) ] ] . J. tations forP[a] whenQ is non-singular. In Appendix A we
Taking the average of this equation give@y(w))  show that the response and correlation functions are simply

=G b(w)F§(w), and so found as averages of treanda fields with a weight given
9(al () by the exponential factor in Eq17) or Eq.(19).
g ch(w) = a*‘+ (14) We shall not explore this case any further. Our aim in this
dF(w) section has simply been to introduce the basic background

riand formalism so that we can can go on to discuss the situ-
ation of real interest to us: the case where the mafiis
aingular.

It will turn out that the closest correspondence betwee
the path integrals for the cases wh@ris singular and non-
singular, occurs when response fields of the kind introduce
by Janssen in the functional integral formulation of critical

dynamics[13] are utilized. To introduce these fields, which lll. SINGULAR CORRELATION MATRIX

will be denoted agi;—or writing them out fully,,(r,t), we As we discussed earlier, a concrete example of a situation
begin with the probability distribution functiongd) in Fou-  whereQ is singular appears in the theory of hydrodynamic
rier transformed variables: fluctuations[3,4], where the fluctuating linearized hydrody-

_ 1 [ dom B namic_al equat_ions are of the_: forch), but v_vith one of the
Plf] ~exp-= f — (- 0)(Q YK w). (15  equations having no fluctuating force. This particular equa-
- 4) 2w tion, which we shall take to be the first ofle=1), has this
structure because it originated from the equation of continu-
ity. If we set?l(r ,1)=0, or?il(t):O in the notation of Eq(2),
then it follows from Eq.(3) thatQ!,=0 if a or b take on the

value 1, that isQJ(a,b=1,...,N) has the form

This can be written in the form

P[f]NfDélDéz...DéN expf g—:[iéjb(_ w)'ﬂ)(w)

- 8- 0 QA w)], (16) 0 .. 0
since completing the square gives Ej5) as required. It is Q= Qs (20)
not surprising that this starting point is closer to that of the 0

singular case, since now it 3, and notQ™%, which appears

in the expression foPLf]. . Roman letters from 1 td). We will begin the study of this
We can obtain a second form f&a] by starting from  g,01ar case by exploiting the linear nature of the problem

Eq. (16), and proceeding as before. Since the Jacobian is g gptain the relation analogous to Efjl) and then move on

constant, the form oP[a] involving response fields is sSimply 4 the discussion of the construction of several forms of the

found by substitutin&{)(w) in terms of thea(w): path integral wher@ is singular.

with «,8=2,...,N (Greek letters will run from 2 tdN and
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We begin by noting that the Fourier transform of the firstinstead use the inverse relations which expressathen

of the equationg2) with T} =0 is

[~iwd* + Glila(w) + Glal(w) =0 (22)
0 ay(w) = - g'(w) G, ai(w), (22)

where g’ is the inverse of the matrik-iws'+GY,] [this
should not be confused with the matri¥;, which is the
(a,b)=(1,12) component of the inverse 6§~ Lyl apl- The other
(N-1) equations read

[—iw8k8,, + Gl Jak(w) + Gla(w) =T,  (23)

which implies that
[-iws 8y, + Gl - Gl ()G Ja(w) = Ti(w). (24)

From Eqgs.(22) and(24), it is clear thata‘l(t) will be a sto-
chastic variable, since th#ﬂ(t) are. While the relationg22)

and(24) between thea,0 and thefJ look to be quite compli-

terms off,:

a(0) = G105 ay(w) = Gopw)f,.

It is straightforward to invert the matrik-iw+G], in this
simple case, to fing/ and so show, for instance, that

9(0)G21G12G2,= 1

Returning to the general case, it is now simple to use Eq.
(25) to obtain the analogous results to E@E)) and (11):

(@w)al(- ) = Gl ) G- w){T5(w)f ¥(- w))
= 2G0(w) Q% GHMw), (32

where we have used E¢B). We now observe that from Eq.
(7), B=gLQlkgIkm which becomes in the singular case
(20), when all elements oQ having a subscript one vanish,

LsQ G (33

(31

[Ciw+Gyy-

ef_

cated, the inverse relations are very S|mple This can be seéd therefore Eq32) becomes

by starting from the resuhb w)= g (w)f discussed earlier

(valid for nonsingular systemsand settlng‘ 1=0. This yields

al(w) = G ()T X, (25)

(a(@)a"(w)) = 2Bf(w)

exactly the same as the nonsingular angtbh.
After this preliminary discussion we can now go on to
discuss how the path integrals are modified wigrs sin-

(34)

For clarity let us apply this to a simple situation, namely gular. Whereas our previous discussion relied on solving lin-
the caseN=2. Of course, this does not directly correspond toear equations foab(w) we will construct the path integrals
a thermodynamic problem, but it is sufficiently simple thatin a way which generalizes easily to the case where the origi-
everything may be written down explicitly in a straightfor- nal equation$2) are nonlinear. We will then specialize to the

ward way. Dropping thg andk (spatia) indices for clarity,
Egs.(2) and(20) become

ay(t) + Gpgay(t) + Groap(t) =0,

a,(t) + Gpyay (1) + Gay(t) = Tolt), (26)

o= (o 0 )

0 Q22 .

Taking Fourier transforms, the first equation in E2p) is a
special case of Eq21):

[-iw+ Gyylay(w) + Gyay(w) =0 (28)

from which we may obtain an expression fofw), as in Eq.
(22):

and

(27)

() =~ g(@)Gy8s(w). (29)

Hereg(w) is the inverse of-iw+Gy,]. Substituting Eq(29)
into the second equation in E(6) yields

[~ i+ Gy~ Gyd(w)Gola(w) = fo(w),  (30)
which should be compared with ER4). Even in this the

simplest case, it is clear that eliminating thevariable leads

to a complicated expression fap [and also, from Eq(29),

linear case to show that results such as &4) are recov-
ered. In the singular case, the functiod) is replaced by

Pl ~ (H s(t il(t))>exp—%1 f difl()(@Q ), T (0.

ti
(39

The probability density functiondP[a] for this case can be
written in a number of ways. In the singular case it is useful

to still view the transformation from the funcuorig to the
functlonsaC to be as before, that is, given by E@), but

with the added constraint thﬂ; 0. So the Jacobian is again
constant due to the linear nature of the transformation, and in
the transformed variables the constraint becoriges) ak

=0. Since Eq(35) only involvesf, ... ,fi in the exponen-
tial, we may use Eq(24) to eliminate them in exactly the
same way as in Sec. Il. The construction now proceeds by
analogy with Eq(5) in the nonsingular case but withandc
replaced byB and y respectively, and using the fact that the
inverse(in the subsEace defined by the Greek indicdgshe
matrix multiplying &, in Eq. (23) is g‘k7 One finds

. . 1 ( do_,;
Plal ~ (IT s ezl exo - | S2ajto

X (BHw)k (). (36

for a;]. Therefore it is better not to break the symmetry of A Lagrange multiplier may now be introduced to implement
the problem by picking out tha; variable as special, and the constraint in Eq(36):
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N 1 ( do,_ 1 ik K has zero entries in the first row and column. Any of the three
Pla]~ [ Da;exp-~ | ——[a](0)(BH(w))},a}(w) forms (37), (17), or (19) are valid representations féfa]
4 ) 27 S . .
' ) ' whenQ is singular, but in the last two cases it is understood
- 4ia} (- 0)(G Y] (w)a)(w)]. (37)  that one has to substitute the fo(20) in order to obtain the

singular version of the result. Once again, it is straightfor-

This is the first form forP[a]. The analysis we have carried ward to obtain the resultL1) from, for instance, the last of
out easily generalizes in the case where the starting equatiofisese forms, and more generally response and correlation
(2) are nonlinear—we have not used the linearity of thefunctions can be naturally expressed as averages ovex the
equations in any essential way in the procedure outlinednda fields, as discussed in Appendix A.
above. If the equations are in fact nonlinear, then the first It is clear that these considerations can be extended in a
term in the exponential in Eq37) will contain powers ofa  straightforward way to the case wheveof the N equations
higher than two and the second term will be of the fornapf (2) have no fluctuating forcetil(t):...:f{w(t):o_ Although
multiplied by a factor containing powers @f higher than we are not aware of previous discussions along the lines
one. The Jacobian factor will also cease to be a constant angiven above, the path-integral formulation of stochastic dif-
become a function of tha’'s and will give rise to a third term  ferential equations when the noise-correlation matrix is sin-
in the exponentiaf14]. gular has been discussed in a different context—when the

The quantityd) is nothing else but a response field of the noise in not white(in time). For certain types of noisgor
kind introduced in Sec. Il. We can see this most easily byexample, exponentially correlated noise, gquasimonochro-

writing the probability density functional in E¢35) as matic noise,..), the non-Markovian process may be written
as a Markovian process in a higher dimensional space, but
~ ~i . . dw with a singular noise-correlation matr[47]. However, the
Plf]~ (HI of 1(‘"))> Da,...Day exp o approach adopted in these cases—to eliminate the equations

with no fluctuating forces in favor of a set of equations
wlidl(= o) f _ai(— ik sk which all have fluctuating forces, but which may be higher
[~ @)fg() = a5~ @) Q2 (@)] order in time[18]—is not an option open to us if the equa-

. N do = tions are nonlinear. Since we wish to keep our treatment as
~ | DaDa,...Dayexp ;['ab(_ ) fy(w) general as possible, it is preferable to proceed as we have
R . done here and to use a constraint to implement the condition

~ &y~ 0)Qp,aNw)]. (38 TFi(t)=0. In addition, Gaussian integrals with noninvertible

rAuadratic forms are encountered when studying fluctuations
around instanton solutions. These are due to zero modes
which are created due to the breaking of continuous symme-
%ries (spatial, temporal or internaby choosing a particular
position” for the instanton. The solution in this case is to

By completing the square in the exponential in the first ter
on the right-hand side of E¢38), we see that we recover Eq.
(35). The second term follows by implementing the con-
straint as a Lagrange multiplier in exactly the same way a:

was done 10 Obta'ﬂ Eq37) above. treat the zero modes exactly through the use of collective
This form for P[f] should be compared with the equiva- coordinateq19], but treat the other modes in the Gaussian

lent result(16) which holds whernQ is nonsingular. In that approximation in the usual way.

case there was no constraint and so it is immediately appar- We now go on to discuss the specific case of fluctuations

ent that the relation between the path integrals in the singulan LIT.

and nonsingular cases is especially clear if either of the start-

ing forms(16) or (38) are used rather than Eqd) or (35): it IV. FLUCTUATIONS IN LINEAR IRREVERSIBLE

is necessary only to substitute E80) into Eq.(16) to obtain THERMODYNAMICS

Eq. (39). Using hydrodynamic language, the five independent vari-
For clarity is it useful to again go to the calle-2 to see  ables in LIT are the volume per unit massthe three com-

explicitly what this means in this simple case. The term inponents of the barycentric velocity, and the temperature

the exponent in Eq(16)—whether the matrixQ is singular  [16]. Linearizing about the equilibrium statév,v,,T)

or not—is =(vg,0,Ty) gives volume and temperature fluctuations de-
fined byv,=v-vy andT;=T-Ty. We will use the same no-
ia,(— w)?l(w) +ia,(- w)?z(w) - 8(— 0)QpA(w), tation for the velocity and the velocity fluctuations, since no

confusion should arise. It is convenient to define the actual

(39 variables we will use to be scaled versionsvgfv,, andT;.
whereb,c=1, 2. If the matrix has the fori27), then the last 1he scaling we choose simplifies the results and is such that
term in Eq.(39) equals A,(-w)Q,3,(w) and thed, integra-  all the variables have the same dimension. Specifically, we

tion may be performed to give back the constréirpto. define[3,4

Therefore Eq(39) applies to both the singular and nonsin- o [ po\Y? [ poC\M2

gular cases, as may be used as the starting point for further 2~ ~P0 V1 1=\ 1] Vu 8= TA T,

analysis in both situations. (40)
The second and third forn{4¢7) and(19) for P[a] can be

obtained in a similar way to the nonsingular case, since Eqwherep, is the mass density in equilibrium ardandC are

(38) is just a special case of E(L6) which applies wher@  quantities defined solely in terms of the fluid in equilibrium:
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ap au 0 iciK, 0
A=|—|, C=(—=]. (41) : 2 i
&P T (9T v G(k) = Iclk,u C3k/.LkV_ C4k 5/“/ |Csz y (47)
i 2
Here p is the thermodynamic pressure ands the internal 0 icok, Cok
energy per unit mass. where the constants, ... ,c5 are given by
Having defined these variables, it is now straightforward 12
to linearize the balance equations for mass, linear momen- c=AV2 o = (E)(E)
tum, and energy to obtain, in the notation that we have used ! o2\ p/\ )
in this paper,
. _ (2u+9) 2
al(t)+Glkakt) =0, bc=1,..,5. (42) = T2, ¢=E
Po 3po

Before giving the explicit form of the matrixz, we first
remark that it is sometimes convenient to decompose it into A

its symmetric and antisymmetric parts: C5= 0oC’ (48)
Gk =gk + Ak (43)  The constant#\ andC have been defined previously in Eq.
bc c bcr . : L
(41), as have the mass density and temperature in equilib-
where rium, pg andT,. In addition,B=(dp/dJT), and\,{ andu are
" _ " " the thermal conductivity, the bulk viscosity, and the shear
=S andAl = - Ad,. (44)  viscosity, respectively. In fact by definitioh=c2, wherecy

is the isothermal speed of sound a@&C,, the specific
heat at constant volume. We also ha®e o/ k1, where «
=(1/v)(av!dT), and kr=—=(1/v)(dv/dp)y are the thermal ex-
kT pansion coefficient and the isothermal susceptibility, respec-
Qlk = 2-0gk (45)  tively.

A The inversion of -iw+G] ™t is carried out in Appendix B.
For definiteness, we will consider the case of density fluc-
tuations in a fluid, and so will wish to calculate the density-
density correlation functiodp;(k, w)p.(-k,-w)). From Eg.
_(40), a,=—p3'%,, wherev,=—p,/p2. Therefore

The reason for this is that the FDT shows tkats directly
proportional toS [3,4]:

Therefore giving explicit expressions for the matri&and
A means that fluctuating LIT is completely defined.

In fact, it is the matricegy and B, rather thanS and A
which naturally occur in a path-integral context. This is be

cause, as discussed in Appendix &,and B are averages (py(K, ) py(— K, — @)} = polay (K, w)ag(— K, — w))
over products of the fielda anda. It is clear that knowing; P1 PL P !
andB also completely specifies LIT, since if they are given, =2poB11(k, ), (49)

G andQ, and hencé& andA, can be found. Therefore, when using Eq.(11). Use of the FDT(46) then gives
using the path-integral formulation, it is frequently more use-
ful to write the FDT(45) in a different form which involves
the matrice8 andg. To derive this alternative form we start
from the definition oB given by Eq.(7) and substitute fo

KepnT, )
(p1(K, ) py(~ K, — w)) = %{gn(k, )+ Gia(k,w)].

using the FDT(45) to obtain (50
From Appendix B we have
kgT,
B(w) :g(w)(ﬂ)[GmT]gT(— ©). (—iw)2+Hy(-iw) + H,
2A Gnk,w) = ——— — : , (5D
(miw)*+Hy(-iw)*+ Hs(-iw) + Hy
But G(w)G=l+iwG(w), and so where
KT, H,=[(cs—Cy) + Cs]K?,
st = “£12 160 + ') (46 leme el
H, = [(C3— Cy)csk? + c51K?,
This equation tells us that the correlation function is not
independent of the response function; if we can find the latter Ha=H, + c2k2,
then we can determine the former. So the analysis of fluctua-
. : . e ) i
tions in LIT reduces to inverting—iwl +G]™ to obtaing. H, = C5cf(k2)2. (52)

To carry out this inversion, we first need to specify the
matrix G. To do this we first need to go back to the continu- From Eq.(52) we see that the constards ..., cs only appear

ous coordinate labelsr’ rather than the discrete labglsk. in the combinations

It is also convenient to go over to a Fourier representation in 1

space, as well as in time. From the paper by Fox and Uhlen- =2 =20 =(y-1)c?
. 1= Cr, 2 2 2 Y Cr,

beck we find tha{3] k7PoC,
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(413u+{ A
C3—C=—"_——", GC= )
Po pOCv
where y=C,/C,. To derive the result3=(y-1)c; we have
used the eqwllbrlum thermodynamic relatiorS,-C,
=TVa?/ ky andcT 1/pky. From Eqs.(50) and(51) we ob—
tain

(53)

2KppoTol (C3 =~ Cg)@? + CsH, ] (K?)?
0¥ (w? - H3)2 + (lez - H4)2

<P1(klw)P1(_ k!_ (1))> =

(54)

where we have usecif:A. This agrees with the expression

given in the literature[20], obtained by a very different
method. If it is assumed that botle;—c,) andcs are very

small compared witlic3+c3), then the poles of the response

function (51) are found to be atv=~-i(ylc5)k? and atw
~ +(c2+c)k2(i/2)[cz—Cu+Cs—y lcs K2 [20]. These give
rise to Lorentzian line shapes in E&4) which are the Ray-
leigh peak and the Brillouin doublet respectively.

In the case of many fluide=0 which impliesC,~C,

(or y=1) and so we may work within an approximation in

which we takec,=0. This allows us to factor a terfi-iw
+Csk?] from both the numerator and denominator of Exfl)
to obtain

(—iw) +(C3— K
(—iw)? + (Cg— CoK¥(— iw) + 22’

Gri(k,w) = (55)

The constants no longer appears in the expression for the

density correlation function, which is found from E&O) to
be

(p1(K, w)p1 (= k,~ w))
_ 2KgpoTo(C3 = €)(K?)?
(w? - Cikz)z + w2(03 - c)%4(K?)?
_ 2kaTo (413 + £1(KD)?
(0?32 + () (A13) e + A (KD?

(56)

PHYSICAL REVIEW E 70, 046135(2004)

the famous papers by Onsager and Machlgd5], their
path-integral formalism did not cover the case where the
noise correlation matrix is singular, which is exactly the case
encountered in fluctuating irreversible thermodynamics.

As with any linear theory, the use of path integrals is not
strictly necessary, since all calculations may be carried out
directly. This is certainly the case with fluctuations in LIT,
which was the specific illustrative example which we used
here. However, our aim was to set up the formalism in as
general a way as possible, so that it may be applied to more
nontrivial theories of fluctuating irreversible thermodynam-
ics in the future. As an example, we used a Lagrange multi-
plier to impose the constraint resulting from the deterministic
equation without a stochastic term. This resulted in a field
which was in fact an example of the response fields intro-
duced into the functional integral formulation of critical dy-
namics[13]. We could have avoided this by exploiting the
linear nature of the theory, and simply solved this constraint
and incorporated it into the other stochastic equations. We
avoided doing this, simply because it would not generalize to
the case of theories with nonlinearities.

In fact the formalism of response fields proves to be a
very natural one when dealing with theories with a singular
noise correlation matrix. The main reason is because@, is
not Q" which appears in this formalism, and so it is imme-
diately applicable whethe® is singular or not. It is also
useful because the avera@d) is just the response function.
In LIT there is a FDT which states that the density-density
correlation function is just the real part of the corresponding
response functiofup to a constantand so it is only neces-
sary to calculate this response function. It is obtained by

¥nvert|ng a 5<5 matrix, which is relatively straightforward
does not enter into the final expression for the density;

to accomplish since the inverse only has 7 independent en-
tries due to the symmetry of the problem. The resulting ex-
pression for the correlation function, given in the case of a
fluid by Eq.(54), is completely general. This approach to the
calculation of the correlation function, which involves a
single matrix inversion, is not the usual technique that is
adopted, but it is very natural in the path-integral context,
and is also very systematic. If necessary, algebraic manipu-
lation programs could be used to invert larger and more com-
plicated matrices.

It is hoped that the ideas contained in this paper will form

using the physical valug$3). This agrees with the result of
a previous calculatiorj21], which again used a different
method of determining this correlation function. Now the
poles of Eq(55) are atw=~ cik?(i/2)[cz3—c4]k?, and give
rise to the Brillouin doublet only.

Our purpose in this section has been to give explicit forms
for the response and correlation functions in order to illus-
trate what is required to carry out a calculation in practice.
As we have shown, all that is needed is the inversion of ab
matrix. This is a simple algorithmic task, which can easily be
programmed if necessary.

the basis for investigations of more complex theories, such
as EIT and NLIT, where we expect that the systematic nature
of the approach will lead to a more efficient calculational
method. We hope to discuss the extension of the current
work to these cases in a future publication.
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V. CONCLUSIONS APPENDIX A: SOME ASPECTS OF THE PATH-INTEGRAL

This paper has been concerned with the reformulation of FORMALISM

theories of fluctuating irreversible thermodynamics in terms In this appendix we present some technical details related
of path integrals. Although this was, in principle, the topic of to the path-integral formalism of Sec. Il and Sec. Ill.
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We begin by obtaining Eq6) from Eq. (4) by working dx .
with the Fourier transformed variables: fd)’f Wg(x,y)e'xy EX (AB)
koo [ ediotak Here we have now discretized time as well as space, and the
A(w) = J_w dte*’a(t), (A1) time, space and internéb=1,...,N) labels will all be incor-

_ porated into a single indeft,J=1,...,n). Thus the integrals
with a similar equation foff}. The Fourier transformed ver- in Eq.(A6) aren-fold integrals, anc andy aren-component

sion of Eq.(2) is vectors. The functiorg(x,y) is xy; for the numerator of
5 response functiony,y; for numerator of the correlation func-
[-iwd* 6+ GlK]ak(w) = fl(w). (A2)  tion, and 1 for the denominator. Note that we have omitted
) the Jacobian factor, and all other constant factors, since they
If we define cancel when averages are being calculated.
(GYK () = [~ w8, + G, (A3) All the above hold whether or not the matx and hence

the matrixB, is singular. We wish to evaluate E@\6) with-
out making the assumption th@t or B are nonsingular. To
do this wheng=1 is straightforward, since theintegrations
give a product ofi delta-functions with arguments which are

1 [ dom. o the components af and alson factors of 2r which cancel
Plf] ~exp-= f —fl(- w)(Q‘l)'bka 'é(w) the (27)". Therefore the final integrals over tlxevariables

B 4 give 1. This means that the denominator in any average is

equal to unity, and may be omitted from now on. Whgn

1 ( do . - ~ =x1y3, we may carry out thg integrations in a similar man-
O Pla] ~ exp 2 f ZTan(_ @) (G- w)Q ner to give

x G Hw)al(w), - J dx{%a(x)}x.e-X'B'X, (A7)
which is Eq.(6) where the matrixB(w) is given by B(w) ) . ) ’ . .
=G(0)QGT(-w). From Eq.(A3), G* (0)=G(~w), and there- which givesid, after integration by parts. Finally, whem
fore GT(-w)=G'(w), and so another form fd(w) is Eq.(7).  ~Y1Y» W€ find

then Eq.(A2) has the form(G )X (w)a(w)=fi(w). It then
follows from Eq.(4) that

Next we wish to show that the resyltl) for the correla-
tion function, and the response functigi¥), may be found —f dx P 8(x) (e€*BX=2B,,. (A8)
by averagingal(w)a(-w) and al(w)a(-w), respectively, X 0%
with a weight given by the exponential in EA.7). We should stress again that these results have been derived
The functional integrals which we wish to evaluate are ofwithout making the assumption th@, and soB, is nonsin-
the form gular. So, in summary, we have
N ) ) (a(@)a(- ) =iG h(w) (A9)
J [T Da,Da, | f(ay(w),aq(w))Pla.a], (A4) nd
b=1
where (al(w)a(~ w)) = 2Bfj(w). (A10)
A dw A —13jk k
Pla,a]=exp | ——iay(- 0)(G)pdw)adw) APPENDIX B: INVERSION OF THE MATRIX G
- é{)(_ w)Q{,kcé'é(w)], (A5) From Eq.(47) we have that
2 .
as in Eq. (17) and where f(a(w),a4(w)) is equal to _rOk ir 1Ky, _ 0
al(w)ai(-w) in the case of the numerator of the response G Hk,w)=|irk, rak,k,—rk?s,, irk, |, (Bl)
function, toa{)(w)a‘é(—w) for the numerator of the correlation 0 ir ok, rsk?

function, and to 1 for denominator of both the response func- .
tion and the correlation function. where the constanty,ry, ....rs are given by

If we make the change of variablea /(o) ro=—iw', ry=cy,
=&l () (G HK(-w), used to obtain Eq18) from Eq.(17) in
Sec. Il, the expression for the correlation function is un- [,=Cp r3=Cs

changed, since a common factor cancels between the nu-
merator and denominator, but the response function is mul-
tiplied by the matrixG(w). Going back to the time variable,
we may write the integrals we now have to perform in theHere o’ =w/k? and the constants,, ...,cs are given by Eq.
form (48).

l4= +i(,!),+C4, r5=_i(1),+C5. (BZ)

046135-8



PATH INTEGRALS AND FLUCTUATIONS IN ...

From the symmetry properties of the system, we expect

that the inverse of EqB1) will have the form

So ISk, S
Gk, w) =|isik, sk,k,—sk?5,, is)k, |, (B3)
S6 isK,, S5

where the constantsy,s;,...,Ss are to be determined in
terms of the constantg,rq,...,rs.
By direct multiplication of Eqs(B1) and (B3) we can

verify that G(k, w) does indeed have the form given by Eq.

(B3), and that the constantg,s,,...,S; are given by

Fosok® =115k =1,

rSo+ (r3—ra)sik’ +r,5=0,

IS +r55=0, (B4)
rasa(k®)?=1,
roS1+ri(s3=s4) =0,
r1S1— (3= rg)Ssk? + r3sk? +1,8,= 0,
ra(S3—S4) +158,=0, (B5)

PHYSICAL REVIEW E 70, 046135(2004)

r1Se+ (13— rg)Sk2 +1,5=0,

—1,5K? +resck?=1. (B6)
This set of 10 equations reduce to
__Tifs —_Tof2
D™ * p™
lol's s
S4i—S=- S, S=-——%, B7
n~ S3 D So D So (B7)
with
K(roso=ris) =1, (K)rgs,=1,
k*(rsss =125, = 1, (B8)

whereD=r3+(rz—r,)rsk’ From Egs.(B7) and (B8) any of
the 5,5, --.,S can be easily determined.

In Sec. IV we discuss an example for which we only need
to find 5. From the first equations of Eqd7) and(B8) we
find this is given by

2 2

r5+ (r3—ryrek
kst: . 2 is Dls .. (B9)
(rory+rsry) +ro(r3—ryrsk

Writing this in terms of the physical constants defined by Eq.
(48) results in the expression fgg(=G41(k, )) given by Eq.
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