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We express the set of stochastic differential equations which describe fluctuations in linear irreversible
thermodynamics in terms of path integrals. The stochastic terms which are added to the linearized macroscopic
equations have a correlation matrix that is singular, which implies that the straightforward formulation of the
problem in terms of path integrals fails. We therefore begin by constructing a path-integral representation
which is valid whether or not the correlation matrix is singular. We apply this to linearized irreversible
thermodynamics, but the technique is designed to be applicable to more general versions of the theory. The
approach emphasizes the role of the response and correlation functions as basic elements of the theory, and we
calculate these quantities explicitly for the case of density fluctuations in a fluid.

DOI: 10.1103/PhysRevE.70.046135 PACS number(s): 05.70.Ln, 05.40.2a, 02.50.Ey

I. INTRODUCTION

The study of fluctuations in a thermodynamic context has
a long history dating back to Onsager[1]. A systematic
method of investigating this subject begins by forming me-
soscopic equations by adding stochastic terms, representing
the fluctuations, to the macroscopic thermodynamic equa-
tions. The resulting Langevin-type equations give a descrip-
tion of the system from which correlation functions and other
quantities of interest can be calculated. The simplest such
formulation, first investigated by Onsager and Machlup[2],
consists of linearizing the macroscopic equations about the
equilibrium state and assuming that the stochastic description
is stationary, Gaussian and Markovian. This gives rise to a
consistent theory of fluctuations in linear irreversible thermo-
dynamics(LIT ). The derivation of the deterministic equa-
tions of this theory is straightforward—the five balance
equations for mass, linear momentum and energy are
linearized—but the quantitative description of the stochastic
terms requires a little more work. Since the process is Gauss-
ian and Markovian, and since the deterministic equations are
linear and first order in time, these stochastic terms should
consist of Gaussian white noise with zero mean. As such
they will be completely described by a noise correlation ma-
trix Qab,a,b=1,…,5. This matrix cannota priori be deter-
mined from the macroscopic equations, but the assumption
of Langevin dynamics of the type we have described, leads
to a fluctuation dissipation theorem(FDT) which givesQab
in terms of a matrix which does appear in the macroscopic
equations[3,4]. Thus all quantities in the theory can be de-
termined, and quantitative predictions can now be made.

Within the past two or three decades this theory has been
extended in various ways. For instance, in the formulation of
extended irreversible thermodynamics(EIT) [5–8] and non-
linear irreversible thermodynamics(NLIT ) [9,10]. The sto-
chastic version of the former leads to processes which are
non-Markovian if the original five variables of mass, linear
momentum and energy are used[4], and the latter attempts to

keep nonlinear terms in the balance equations. Performing
calculations in these more complex theories is not so
straightforward: if the process is not Markovian, simple
forms of the Fokker-Planck equation are not available and if
the Langevin equations are nonlinear, systematic approxima-
tion procedures need to be developed. In both these cases,
the analysis of the theory and explicit calculations can be
simplified by reformulating the Langevin equations as path
integrals. This is due to the fact that the path-integral formu-
lation of non-Markovian processes is not inherently different
from that of Markovian processes[11,12] and that systematic
approximation schemes in stochastic nonlinear dynamics are
frequently more simple to formulate in a path-integral con-
text [13,14]. However, there is a problem: for any theory of
fluctuations in nonequilibrium thermodynamics theQ matrix
will be singular, due to the fact that the continuity equation
has no stochastic term associated with it. Since the structure
of the Onsager-Machlup functional[15], which appears in
the path-integral representation of stochastic processes, in-
volves Q−1 in an essential way, the naive prescription for
obtaining the path-integral formulation of nonequilibrium
thermodynamics cannot be followed.

In this paper, we describe a procedure for constructing
path integrals when the noise-correlation matrix is singular.
We will assume that the system is described by a set of
continuous variablesabsr ,td with r representing position in
space,t the time, andb=1,… ,N labeling the different vari-
ables. We will then go on to apply this formalism to LIT
whereN=5 and theabsr ,td will have the specific interpreta-
tions of volume, velocity and temperature fluctuations. Our
intention is to develop a sufficiently general formalism that it
can cope with the complications of EIT and NLIT, so that it
may be extended to these cases in the future. We have also
tried to make the presentation reasonably self-contained, so
that Sec. II reviews the standard procedure for constructing
path integrals whenQ is nonsingular, and Sec. III describes
the modifications required whenQ is singular. Technical de-
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tails relevant for both these sections are given in Appendix
A. The special case of LIT is discussed in Sec. IV and an
explicit calculation of the response and correlation functions
for the case of density fluctuations in a fluid is given. Details
of this calculation are given in Appendix B. We conclude in
Sec. V with a brief review of the paper and plans for future
work.

II. PATH-INTEGRAL FORMALISM

Since our main motivation for the work we will describe
in this section and Sec. III will be the application to the study
of fluctuations in LIT, we will use a notation which we
adopted previously when studying this theory[4]. In this
notation the Langevin-type equations which the set of vari-
ablesabsr ,td obey are written as

] absr,td
] t

= − o
c
E dr8Gbcsr,r8dacsr8,td + f̃ bsr,td. s1d

Here the first term on the right-hand side is a result of the
linearization of the macroscopic equation about the station-

ary state andf̃ bsr ,td is a stochastic term that represents the
fluctuations in the system.

So our starting point in this section will be equations of
the type(1) which we will write in the form

ȧb
j std + Gbc

jk ac
kstd = f̃ b

j std, b,c = 1,…,N, s2d

where the continuous coordinate labelsr ,r8 have been re-
placed by the discrete labelsj ,k for convenience and where
the summation convention is assumed. The stochastic term

f̃ b
j std is taken to have a Gaussian distribution with mean zero

and correlator

k f̃ b
j std f̃ c

kst8dl = 2Qbc
jk dst − t8d. s3d

It is clear from Eq.(3) that the matrixQ, viewed in the
combineds j ,bd space, is real, symmetric and positive semi-
definite. In this section we will review the general path-
integral formalism for the case whereQ is nonsingular, that
is, detQÞ0—which is in fact the general situation encoun-
tered outside the theory of fluctuating nonequilibrium ther-
modynamics, and was the case originally discussed by On-
sager and Machlup[15].

Since the stochastic term in Eq.(2) is Gaussian, white and
has zero mean, the corresponding probability distribution
functional can be written as

Pff̃Ig , exp −
1

4
E dtf̃b

j stdsQ−1dbc
jk f̃ c

kstd, s4d

where f̃I=s f̃I
1, f̃I

2,…d and f̃I
i =s f̃ 1

i , f̃ 2
i ,… , f̃ N

i d. To find the
probability density functional for theaI is a simple matter: the
first-order differential equation(2), together with an initial
condition onab

j st0d, defines the transformation from the func-

tions f̃ b
j to the functionsac

k. ThereforePfaIg=Pff̃IgJ, whereJ

;Detsd f̃ /dad is the Jacobian of the transformation. Since, in

this case, the relation(2) betweenf̃I andaI is linear, the Jaco-

bian is independent ofaI and as such can be absorbed into the
normalization ofPfaIg. Therefore to findPfaIg we only re-
quire to substitute Eq.(2) into Eq. (4):

PfaIg , exp −
1

4
E dtfȧb

j std + Gbd
jl ad

l stdgsQ−1dbc
jk

3fȧc
kstd + Gce

kmae
mstdg. s5d

In subsequent developments it is easier to work with Fourier
transformed variables. It is shown in Appendix A that in this
case Eq.(5) becomes

PfaIg , exp −
1

4
E dv

2p
ab

j s− vd„B−1svd…bc
jk ac

ksvd, s6d

where the matrixBsvd is given by

Bsvd = GsvdQG†svd, s7d

andGsvd=f−ivI +Gg−1, whereI is the unit matrix.
Since Q is real and symmetric,Bsvd is Hermitian:

B†svd=Bsvd. Using PfaIg given by Eq.(6) we can now cal-
culate quantities of interest, for example the correlation
function

kae
l svdaf

ms− vdl = kae
l svdaf

pmsvdl

=
E DaIae

l svdaf
pmsvdexps− Sd

E DaI exps− Sd
, s8d

where

S =
1

4
E dv

2p
ab

p jsvdsB−1svddbc
jk ac

ksvd. s9d

The Jacobian and normalization factors have canceled be-
tween the numerator and the denominator. SinceB is Her-
mitian it may be diagonalized by a unitary transformation
and the Gaussian integral(8) evaluated in the standard way
[14] to yield 2Bef

lmsvd. Of course, in this simple case this
result may be obtained in a more straightforward manner:

kae
l svdaf

ms− vdl = Geb
lj svdG fc

mks− vdk f̃ b
j svd f̃ c

ks− vdl

= Geb
lj svd2Qbc

jkG fc
mks− vd, s10d

where we have used Eq.(3). SinceG fc
mks−vd=Gcf

†kmsvd,

kae
l svdaf

pmsvdl = 2Bef
lmsvd s11d

as before.
The usual result, as quoted in de Groot and Mazur[16],

for example, is given as a correlation function in time. To
make contact with this result, we first note that the use of the
Fourier representation means that initial conditions were set
in the infinitely distant past, and so averages are with respect
to a stationary probability distribution: the system is “aged.”
It follows that the required correlation functionkae

l stdaf
mst8dlS

only depends on the combinationut− t8u, andt8 may be set to
zero without loss of generality. The subscriptS is present to
remind us that the distribution is stationary. It is then easy to
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verify that this correlation function and the one appearing in
Eq. (11) are Fourier transforms of each other:

kae
l stdaf

ms0dlS=E
−`

` dv

2p
kae

l svdaf
pmsvdle−ivt

=E
−`

` dv

2p
Geb

lj svd2Qbc
jkG fc

mks− vde−ivt.

This integral may be evaluated using the identity

Gab
ij svd =E

0

`

dr e−rsG −1di j
absvd. s12d

Performing thev integration gives the familiar result[16]

kae
l stdaf

ms0dlS= 2E
0

`

dr e−sr+tdGea
li

Qab
ij e−rGfb

mj
st ù 0d.

s13d

The result(11) shows that(up to a factor of 2) the matrix
B is the correlation function. The matrixG, on the other
hand, is the response function. To see this let us add an
external deterministic forceFb

j std to the right-hand side of
Eq. (2). Then we have

ab
j svd = Gbc

jk svd„ f̃ c
ksvd + Fc

ksvd….

Taking the average of this equation giveskab
j svdl

=G bc
jk svdFc

ksvd, and so

G bc
jk svd =

] kab
j svdl

] Fc
ksvd

. s14d

It will turn out that the closest correspondence between
the path integrals for the cases whenQ is singular and non-
singular, occurs when response fields of the kind introduced
by Janssen in the functional integral formulation of critical
dynamics[13] are utilized. To introduce these fields, which
will be denoted asâb

i —or writing them out fully,âbsr ,td, we
begin with the probability distribution functional(4) in Fou-
rier transformed variables:

Pff̃Ig , exp −
1

4
E dv

2p
f̃ b

j s− vdsQ−1dbc
jk f̃c

ksvd. s15d

This can be written in the form

Pff̃Ig , E Dâ1Dâ2…DâN expE dv

2p
fiâb

j s− vd f̃ b
j svd

− âb
j s− vdQbc

jk âc
ksvdg, s16d

since completing the square gives Eq.(15) as required. It is
not surprising that this starting point is closer to that of the
singular case, since now it isQ, and notQ−1, which appears

in the expression forPff̃Ig.
We can obtain a second form forPfaIg by starting from

Eq. (16), and proceeding as before. Since the Jacobian is a
constant, the form ofPfaIg involving response fields is simply

found by substitutingf̃ b
j svd in terms of theac

ksvd:

PfaIg , E Dâ1Dâ2…DâN expE dv

2p

3fiâb
j s− vdsG−1dbc

jk svdac
ksvd − âb

j s− vdQbc
jk âc

ksvdg.

s17d

This version of the path integral is especially useful in non-
linear theories if a perturbation expansion in the nonlinear
terms has to be carried out. In this case the terms in the
exponential in Eq.(17) would be the “free part” of the theory
and the non-Gaussian “interacting” terms would be expanded
perturbatively. Finally, we can define new response fields
âc8

ksvd= âb
j svdsG−1dbc

jk s−vd, so thatPfaIg has the form

E Dâ18Dâ28…DâN8 expE dv

2p
fiâc8

ks− vdac
ksvd

− âb8
js− vdhGQG†jbc

jk svdâc8
ksvdg. s18d

Dropping the primes and using the definition(7) of B gives
the third form forPfaIg:

PfaIg , E Dâ1Dâ2…DâN expE dv

2p
fiâc

ks− vdac
ksvd

− âb
j s− vdBbc

jk svdâc
ksvdg. s19d

Any of the three forms(6), (17), or (19) are valid represen-
tations forPfaIg whenQ is non-singular. In Appendix A we
show that the response and correlation functions are simply
found as averages of thea and â fields with a weight given
by the exponential factor in Eq.(17) or Eq. (19).

We shall not explore this case any further. Our aim in this
section has simply been to introduce the basic background
and formalism so that we can can go on to discuss the situ-
ation of real interest to us: the case where the matrixQ is
singular.

III. SINGULAR CORRELATION MATRIX

As we discussed earlier, a concrete example of a situation
whereQ is singular appears in the theory of hydrodynamic
fluctuations[3,4], where the fluctuating linearized hydrody-
namical equations are of the form(1), but with one of the
equations having no fluctuating force. This particular equa-
tion, which we shall take to be the first onesb=1d, has this
structure because it originated from the equation of continu-

ity. If we set f̃1sr ,td=0, or f̃1
j std=0 in the notation of Eq.(2),

then it follows from Eq.(3) thatQab
ij =0 if a or b take on the

value 1, that is,Qab
ij sa,b=1,… ,Nd has the form

Q = 10 … 0

Qab
i j

0
2 s20d

with a ,b=2,… ,N (Greek letters will run from 2 toN and
Roman letters from 1 toN). We will begin the study of this
singular case by exploiting the linear nature of the problem
to obtain the relation analogous to Eq.(11) and then move on
to the discussion of the construction of several forms of the
path integral whenQ is singular.
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We begin by noting that the Fourier transform of the first

of the equations(2) with f̃ 1
i =0 is

f− ivd jk + G11
jk ga1

ksvd + G1g
jk ag

ksvd = 0 s21d

⇒a1
i svd = − gijsvdG1g

jk ag
ksvd, s22d

where gij is the inverse of the matrixf−ivd i j +G11
i j g [this

should not be confused with the matrixG11
i j , which is the

sa,bd=s1,1d component of the inverse ofsG−1dab
ij ]. The other

sN−1d equations read

f− ivd jkdbg + Gbg
jk gag

ksvd + Gb1
jk a1

ksvd = f̃b
j s23d

which implies that

f− ivd jkdbg + Gbg
jk − Gb1

jl glisvdG1g
ik gag

ksvd = f̃b
j svd. s24d

From Eqs.(22) and (24), it is clear thata1
j std will be a sto-

chastic variable, since theab
j std are. While the relations(22)

and (24) between theab
j and thef̃b

j look to be quite compli-
cated, the inverse relations are very simple. This can be seen

by starting from the resultab
j svd=Gbc

jk svd f̃ c
k discussed earlier

(valid for nonsingular systems) and settingf̃ 1
k=0. This yields

ab
j svd = Gbg

jk svd f̃ g
k . s25d

For clarity let us apply this to a simple situation, namely
the caseN=2. Of course, this does not directly correspond to
a thermodynamic problem, but it is sufficiently simple that
everything may be written down explicitly in a straightfor-
ward way. Dropping thej andk (spatial) indices for clarity,
Eqs.(2) and (20) become

ȧ1std + G11a1std + G12a2std = 0,

ȧ2std + G21a1std + G22a2std = f̃2std, s26d

and

Q = S0 0

0 Q22
D . s27d

Taking Fourier transforms, the first equation in Eq.(26) is a
special case of Eq.(21):

f− iv + G11ga1svd + G12a2svd = 0, s28d

from which we may obtain an expression fora1svd, as in Eq.
(22):

a1svd = − gsvdG12a2svd. s29d

Heregsvd is the inverse off−iv+G11g. Substituting Eq.(29)
into the second equation in Eq.(26) yields

f− iv + G22 − G21gsvdG12ga2svd = f̃2svd, s30d

which should be compared with Eq.(24). Even in this the
simplest case, it is clear that eliminating thea1 variable leads
to a complicated expression fora2 [and also, from Eq.(29),
for a1]. Therefore it is better not to break the symmetry of
the problem by picking out thea1 variable as special, and

instead use the inverse relations which express thea’s in
terms of f2:

a1svd = G12svd f̃2, a2svd = G22svd f̃2. s31d

It is straightforward to invert the matrixf−iv+Gg, in this
simple case, to findG and so show, for instance, that

f− iv + G22 − gsvdG21G12gG22 = 1.

Returning to the general case, it is now simple to use Eq.
(25) to obtain the analogous results to Eqs.(10) and (11):

kae
l svdaf

ms− vdl = Geb
l j svdG fg

mks− vdk f̃b
j svd f̃ g

ks− vdl

= 2Geb
l j svdQbg

jk Ggf
†kmsvd, s32d

where we have used Eq.(3). We now observe that from Eq.
(7), Bef

lm=Geb
lj Qbc

jkGcf
†km, which becomes in the singular case

(20), when all elements ofQ having a subscript one vanish,

Bef
lm = Geb

l j Qbg
jk Ggf

†km, s33d

and therefore Eq.(32) becomes

kae
l svdaf

pmsvdl = 2Bef
lmsvd s34d

exactly the same as the nonsingular analog(11).
After this preliminary discussion we can now go on to

discuss how the path integrals are modified whenQ is sin-
gular. Whereas our previous discussion relied on solving lin-
ear equations forab

j svd, we will construct the path integrals
in a way which generalizes easily to the case where the origi-
nal equations(2) are nonlinear. We will then specialize to the
linear case to show that results such as Eq.(34) are recov-
ered. In the singular case, the functional(4) is replaced by

Pff̃Ig , Sp
t,i

d„ f̃ 1
i std…Dexp −

1

4
E dtf̃b

j stdsQ−1dbg
jk f̃ g

kstd.

s35d

The probability density functionalPfaIg for this case can be
written in a number of ways. In the singular case it is useful

to still view the transformation from the functionsf̃ b
j to the

functionsac
k to be as before, that is, given by Eq.(2), but

with the added constraint thatf̃1
j =0. So the Jacobian is again

constant due to the linear nature of the transformation, and in
the transformed variables the constraint becomessG−1d1b

jk ab
k

=0. Since Eq.(35) only involves f̃2
j ,… , f̃N

j in the exponen-
tial, we may use Eq.(24) to eliminate them in exactly the
same way as in Sec. II. The construction now proceeds by
analogy with Eq.(5) in the nonsingular case but withb andc
replaced byb andg respectively, and using the fact that the
inverse(in the subspace defined by the Greek indices) of the
matrix multiplying ag

k in Eq. (23) is Gbg
jk . One finds

PfaIg , Sp
v,i

d„sG−1d1b
ij svdab

j svd…Dexp −
1

4
E dv

2p
ab

p jsvd

3„B−1svd…bg
jk ag

ksvd. s36d

A Lagrange multiplier may now be introduced to implement
the constraint in Eq.(36):
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PfaIg , E Dâ1 exp −
1

4
E dv

2p
fab

p jsvd„B−1svd…bg
jk ag

ksvd

− 4iâ1
i s− vdsG−1d1b

ij svdab
j svdg. s37d

This is the first form forPfaIg. The analysis we have carried
out easily generalizes in the case where the starting equations
(2) are nonlinear—we have not used the linearity of the
equations in any essential way in the procedure outlined
above. If the equations are in fact nonlinear, then the first
term in the exponential in Eq.(37) will contain powers ofa
higher than two and the second term will be of the form ofâ1
multiplied by a factor containing powers ofa higher than
one. The Jacobian factor will also cease to be a constant and
become a function of thea’s and will give rise to a third term
in the exponential[14].

The quantityâ1
i is nothing else but a response field of the

kind introduced in Sec. II. We can see this most easily by
writing the probability density functional in Eq.(35) as

Pff̃Ig , Sp
v,i

d„ f̃ 1
i svd…D E Dâ2…DâN expE dv

2p

3fiâb
j s− vd f̃b

j svd − âb
j s− vdQbg

jk âg
ksvdg

, E Dâ1Dâ2…DâN expE dv

2p
fiâb

j s− vd f̃ b
j svd

− âb
j s− vdQbg

jk âg
ksvdg. s38d

By completing the square in the exponential in the first term
on the right-hand side of Eq.(38), we see that we recover Eq.
(35). The second term follows by implementing the con-
straint as a Lagrange multiplier in exactly the same way as
was done to obtain Eq.(37) above.

This form for Pff̃Ig should be compared with the equiva-
lent result(16) which holds whenQ is nonsingular. In that
case there was no constraint and so it is immediately appar-
ent that the relation between the path integrals in the singular
and nonsingular cases is especially clear if either of the start-
ing forms(16) or (38) are used rather than Eqs.(4) or (35): it
is necessary only to substitute Eq.(20) into Eq.(16) to obtain
Eq. (38).

For clarity is it useful to again go to the caseN=2 to see
explicitly what this means in this simple case. The term in
the exponent in Eq.(16)—whether the matrixQ is singular
or not—is

iâ1s− vd f̃1svd + iâ2s− vd f̃2svd − âbs− vdQbcâcsvd,

s39d

whereb,c=1, 2. If the matrix has the form(27), then the last
term in Eq.(39) equals −â2s−vdQ22â2svd and theâ1 integra-

tion may be performed to give back the constraintf̃1=0.
Therefore Eq.(39) applies to both the singular and nonsin-
gular cases, as may be used as the starting point for further
analysis in both situations.

The second and third forms(17) and(19) for PfaIg can be
obtained in a similar way to the nonsingular case, since Eq.
(38) is just a special case of Eq.(16) which applies whenQ

has zero entries in the first row and column. Any of the three
forms (37), (17), or (19) are valid representations forPfaIg
whenQ is singular, but in the last two cases it is understood
that one has to substitute the form(20) in order to obtain the
singular version of the result. Once again, it is straightfor-
ward to obtain the result(11) from, for instance, the last of
these forms, and more generally response and correlation
functions can be naturally expressed as averages over thea
and â fields, as discussed in Appendix A.

It is clear that these considerations can be extended in a
straightforward way to the case whereM of the N equations
(2) have no fluctuating force:f̃1

j std=¯ = f̃M
j std=0. Although

we are not aware of previous discussions along the lines
given above, the path-integral formulation of stochastic dif-
ferential equations when the noise-correlation matrix is sin-
gular has been discussed in a different context—when the
noise in not white(in time). For certain types of noise(for
example, exponentially correlated noise, quasimonochro-
matic noise,…), the non-Markovian process may be written
as a Markovian process in a higher dimensional space, but
with a singular noise-correlation matrix[17]. However, the
approach adopted in these cases—to eliminate the equations
with no fluctuating forces in favor of a set of equations
which all have fluctuating forces, but which may be higher
order in time[18]—is not an option open to us if the equa-
tions are nonlinear. Since we wish to keep our treatment as
general as possible, it is preferable to proceed as we have
done here and to use a constraint to implement the condition
f̃1

j std=0. In addition, Gaussian integrals with noninvertible
quadratic forms are encountered when studying fluctuations
around instanton solutions. These are due to zero modes
which are created due to the breaking of continuous symme-
tries (spatial, temporal or internal) by choosing a particular
“position” for the instanton. The solution in this case is to
treat the zero modes exactly through the use of collective
coordinates[19], but treat the other modes in the Gaussian
approximation in the usual way.

We now go on to discuss the specific case of fluctuations
in LIT.

IV. FLUCTUATIONS IN LINEAR IRREVERSIBLE
THERMODYNAMICS

Using hydrodynamic language, the five independent vari-
ables in LIT are the volume per unit massv, the three com-
ponents of the barycentric velocityvm, and the temperatureT
[16]. Linearizing about the equilibrium statesv ,vm ,Td
=sv0,0 ,T0d gives volume and temperature fluctuations de-
fined byv1=v−v0 andT1=T−T0. We will use the same no-
tation for the velocity and the velocity fluctuations, since no
confusion should arise. It is convenient to define the actual
variables we will use to be scaled versions ofv1,vm andT1.
The scaling we choose simplifies the results and is such that
all the variables have the same dimension. Specifically, we
define[3,4]

a1 = − r0
3/2v1, am+1 = Sr0

A
D1/2

vm, a5 = Sr0C

T0A
D1/2

T1,

s40d

wherer0 is the mass density in equilibrium andA andC are
quantities defined solely in terms of the fluid in equilibrium:
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A ; S ] p

] r
D

T

, C ; S ] u

] T
D

v
. s41d

Here p is the thermodynamic pressure andu is the internal
energy per unit mass.

Having defined these variables, it is now straightforward
to linearize the balance equations for mass, linear momen-
tum, and energy to obtain, in the notation that we have used
in this paper,

ȧb
j std + Gbc

jk ac
kstd = 0, b,c = 1,…,5. s42d

Before giving the explicit form of the matrixG, we first
remark that it is sometimes convenient to decompose it into
its symmetric and antisymmetric parts:

Gbc
jk = Sbc

jk + Abc
jk , s43d

where

Sbc
jk = Scb

kj andAbc
jk = − Acb

kj . s44d

The reason for this is that the FDT shows thatQ is directly
proportional toS [3,4]:

Qbc
jk =

kBT0

A
Sbc

jk . s45d

Therefore giving explicit expressions for the matricesS and
A means that fluctuating LIT is completely defined.

In fact, it is the matricesG and B, rather thanS and A
which naturally occur in a path-integral context. This is be-
cause, as discussed in Appendix A,G and B are averages
over products of the fieldsa andâ. It is clear that knowingG
andB also completely specifies LIT, since if they are given,
G andQ, and henceS andA, can be found. Therefore, when
using the path-integral formulation, it is frequently more use-
ful to write the FDT(45) in a different form which involves
the matricesB andG. To derive this alternative form we start
from the definition ofB given by Eq.(7) and substitute forQ
using the FDT(45) to obtain

Bsvd = GsvdSkBT0

2A
DfG + GTgGTs− vd.

But GsvdG= I + ivGsvd, and so

Bsvd = SkBT0

2A
DfGsvd + G†svdg. s46d

This equation tells us that the correlation function is not
independent of the response function; if we can find the latter
then we can determine the former. So the analysis of fluctua-
tions in LIT reduces to invertingf−ivI +Gg−1 to obtainG.

To carry out this inversion, we first need to specify the
matrix G. To do this we first need to go back to the continu-
ous coordinate labelsr ,r8 rather than the discrete labelsj ,k.
It is also convenient to go over to a Fourier representation in
space, as well as in time. From the paper by Fox and Uhlen-
beck we find that[3]

Gskd = 1 0 ic1km 0

ic1km c3kmkn − c4k
2dmn ic2km

0 ic2km c5k
2 2 , s47d

where the constantsc1,… ,c5 are given by

c1 = A1/2, c2 = S B

r0
DST0

C
D1/2

,

c3 =
s2m + zd

r0
, c4 =

2m

3r0
,

c5 =
l

r0C
. s48d

The constantsA andC have been defined previously in Eq.
(41), as have the mass density and temperature in equilib-
rium, r0 andT0. In addition,B=s]p/]Tdv andl ,z andm are
the thermal conductivity, the bulk viscosity, and the shear
viscosity, respectively. In fact by definitionA=cT

2, wherecT
is the isothermal speed of sound andC=Cv, the specific
heat at constant volume. We also haveB=a /kT, where a
=s1/vds]v /]Tdp andkT=−s1/vds]v /]pdT are the thermal ex-
pansion coefficient and the isothermal susceptibility, respec-
tively.

The inversion off−iv+Gg−1 is carried out in Appendix B.
For definiteness, we will consider the case of density fluc-
tuations in a fluid, and so will wish to calculate the density-
density correlation functionkr1sk ,vdr1s−k ,−vdl. From Eq.
(40), a1=−r0

3/2v1, wherev1=−r1/r0
2. Therefore

kr1sk,vdr1s− k,− vdl = r0ka1sk,vda1s− k,− vdl

= 2r0B11sk,vd, s49d

using Eq.(11). Use of the FDT(46) then gives

kr1sk,vdr1s− k,− vdl =
kBr0T0

A
fG11sk,vd + G11

p sk,vdg.

s50d

From Appendix B we have

G11sk,vd =
s− ivd2 + H1s− ivd + H2

s− ivd3 + H1s− ivd2 + H3s− ivd + H4
, s51d

where

H1 = fsc3 − c4d + c5gk2,

H2 = fsc3 − c4dc5k
2 + c2

2gk2,

H3 = H2 + c1
2k2,

H4 = c5c1
2sk2d2. s52d

From Eq.(52) we see that the constantsc1,… ,c5 only appear
in the combinations

c1
2 = cT

2, c2
2 =

a2T0

kT
2r0

2Cv
= sg − 1dcT

2,
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c3 − c4 =
s4/3dm + z

r0
, c5 =

l

r0Cv
, s53d

whereg=Cp/Cv. To derive the resultc2
2=sg−1dc1

2 we have
used the equilibrium thermodynamic relationsCp−Cv
=TVa2/kT andcT

2=1/rkT. From Eqs.(50) and (51) we ob-
tain

kr1sk,vdr1s− k,− vdl =
2kBr0T0fsc3 − c4dv2 + c5H2gsk2d2

v2sv2 − H3d2 + sH1v2 − H4d2 ,

s54d

where we have usedc1
2=A. This agrees with the expression

given in the literature[20], obtained by a very different
method. If it is assumed that bothsc3−c4d and c5 are very
small compared withsc1

2+c2
2d, then the poles of the response

function (51) are found to be atv<−isg−1c5dk2 and atv
< ± sc1

2+c2
2dk2−si /2dfc3−c4+c5−g−1c5gk2 [20]. These give

rise to Lorentzian line shapes in Eq.(54) which are the Ray-
leigh peak and the Brillouin doublet respectively.

In the case of many fluidsa<0 which impliesCp<Cv
(or g<1) and so we may work within an approximation in
which we takec2=0. This allows us to factor a termf−iv
+c5k

2g from both the numerator and denominator of Eq.(51)
to obtain

G11sk,vd =
s− ivd + sc3 − c4dk2

s− ivd2 + sc3 − c4dk2s− ivd + c1
2k2 . s55d

The constantc5 no longer appears in the expression for the
response function and therefore the thermal conductivity
does not enter into the final expression for the density-
density correlation function, which is found from Eq.(50) to
be

kr1sk,vdr1s− k,− vdl

=
2kBr0T0sc3 − c4dsk2d2

sv2 − c1
2k2d2 + v2sc3 − c4d2sk2d2

=
2kBT0fs4/3dm + zgsk2d2

sv2 − cT
2k2d2 + sv2/r0

2dfs4/3dm + zg2sk2d2 , s56d

using the physical values(53). This agrees with the result of
a previous calculation[21], which again used a different
method of determining this correlation function. Now the
poles of Eq.(55) are atv< ±c1

2k2−si /2dfc3−c4gk2, and give
rise to the Brillouin doublet only.

Our purpose in this section has been to give explicit forms
for the response and correlation functions in order to illus-
trate what is required to carry out a calculation in practice.
As we have shown, all that is needed is the inversion of a
matrix. This is a simple algorithmic task, which can easily be
programmed if necessary.

V. CONCLUSIONS

This paper has been concerned with the reformulation of
theories of fluctuating irreversible thermodynamics in terms
of path integrals. Although this was, in principle, the topic of

the famous papers by Onsager and Machlup[2,15], their
path-integral formalism did not cover the case where the
noise correlation matrix is singular, which is exactly the case
encountered in fluctuating irreversible thermodynamics.

As with any linear theory, the use of path integrals is not
strictly necessary, since all calculations may be carried out
directly. This is certainly the case with fluctuations in LIT,
which was the specific illustrative example which we used
here. However, our aim was to set up the formalism in as
general a way as possible, so that it may be applied to more
nontrivial theories of fluctuating irreversible thermodynam-
ics in the future. As an example, we used a Lagrange multi-
plier to impose the constraint resulting from the deterministic
equation without a stochastic term. This resulted in a field
which was in fact an example of the response fields intro-
duced into the functional integral formulation of critical dy-
namics[13]. We could have avoided this by exploiting the
linear nature of the theory, and simply solved this constraint
and incorporated it into the other stochastic equations. We
avoided doing this, simply because it would not generalize to
the case of theories with nonlinearities.

In fact the formalism of response fields proves to be a
very natural one when dealing with theories with a singular
noise correlation matrix. The main reason is because it isQ,
not Q−1 which appears in this formalism, and so it is imme-
diately applicable whetherQ is singular or not. It is also
useful because the averagekaâl is just the response function.
In LIT there is a FDT which states that the density-density
correlation function is just the real part of the corresponding
response function(up to a constant), and so it is only neces-
sary to calculate this response function. It is obtained by
inverting a 535 matrix, which is relatively straightforward
to accomplish since the inverse only has 7 independent en-
tries due to the symmetry of the problem. The resulting ex-
pression for the correlation function, given in the case of a
fluid by Eq.(54), is completely general. This approach to the
calculation of the correlation function, which involves a
single matrix inversion, is not the usual technique that is
adopted, but it is very natural in the path-integral context,
and is also very systematic. If necessary, algebraic manipu-
lation programs could be used to invert larger and more com-
plicated matrices.

It is hoped that the ideas contained in this paper will form
the basis for investigations of more complex theories, such
as EIT and NLIT, where we expect that the systematic nature
of the approach will lead to a more efficient calculational
method. We hope to discuss the extension of the current
work to these cases in a future publication.
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APPENDIX A: SOME ASPECTS OF THE PATH-INTEGRAL
FORMALISM

In this appendix we present some technical details related
to the path-integral formalism of Sec. II and Sec. III.
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We begin by obtaining Eq.(6) from Eq. (4) by working
with the Fourier transformed variables:

ac
ksvd =E

−`

`

dteivtac
kstd, sA1d

with a similar equation forf̃ b
j . The Fourier transformed ver-

sion of Eq.(2) is

f− ivd jkdbc + Gbc
jk gac

ksvd = f̃ b
j svd. sA2d

If we define

sG−1dbc
jk svd = f− ivd jkdbc + Gbc

jk g, sA3d

then Eq.(A2) has the formsG−1dbc
jk svdac

ksvd= f̃ b
j svd. It then

follows from Eq.(4) that

PffIg , exp −
1

4
E dv

2p
f̃ b

j s− vdsQ−1dbc
jk f̃ c

ksvd

⇒PfaIg , exp −
1

4
E dv

2p
ab

j s− vd„GT−1s− vdQ−1

3 G−1svd…bc
jk ac

ksvd,

which is Eq. (6) where the matrixBsvd is given by Bsvd
=GsvdQGTs−vd. From Eq.(A3), G* svd=Gs−vd, and there-
fore GTs−vd=G†svd, and so another form forBsvd is Eq.(7).

Next we wish to show that the result(11) for the correla-
tion function, and the response function(14), may be found
by averagingab

j svdac
ks−vd and ab

j svdâc
ks−vd, respectively,

with a weight given by the exponential in Eq.(17).
The functional integrals which we wish to evaluate are of

the form

E Sp
b=1

N

DabDâbD f„acsvd,âdsvd…PfaI,âIg, sA4d

where

PfaI,âIg = expE dv

2p
fiâb

j s− vdsG−1dbc
jk svdac

ksvd

− âb
j s− vdQbc

jk âc
ksvdg, sA5d

as in Eq. (17) and where f(acsvd ,âdsvd) is equal to
ab

j svdâc
ks−vd in the case of the numerator of the response

function, toab
j svdac

ks−vd for the numerator of the correlation
function, and to 1 for denominator of both the response func-
tion and the correlation function.

If we make the change of variableâ c8
ksvd

= âb
j svdsG−1dbc

jk s−vd, used to obtain Eq.(18) from Eq. (17) in
Sec. II, the expression for the correlation function is un-
changed, since a common factor cancels between the nu-
merator and denominator, but the response function is mul-
tiplied by the matrixGsvd. Going back to the time variable,
we may write the integrals we now have to perform in the
form

E dyE dx

s2pdngsx,ydeix·y−x·B·x. sA6d

Here we have now discretized time as well as space, and the
time, space and internalsb=1,… ,Nd labels will all be incor-
porated into a single indexsI ,J=1,… ,nd. Thus the integrals
in Eq. (A6) aren-fold integrals, andx andy aren-component
vectors. The functiongsx ,yd is xIyJ for the numerator of
response function,yIyJ for numerator of the correlation func-
tion, and 1 for the denominator. Note that we have omitted
the Jacobian factor, and all other constant factors, since they
cancel when averages are being calculated.

All the above hold whether or not the matrixQ, and hence
the matrixB, is singular. We wish to evaluate Eq.(A6) with-
out making the assumption thatQ or B are nonsingular. To
do this wheng=1 is straightforward, since they integrations
give a product ofn delta-functions with arguments which are
the components ofx and alson factors of 2p which cancel
the s2pdn. Therefore the final integrals over thex variables
give 1. This means that the denominator in any average is
equal to unity, and may be omitted from now on. Wheng
=xIyJ, we may carry out they integrations in a similar man-
ner to give

− i E dxH ]

] xJ
dsxdJxIe

−x·B·x, sA7d

which givesidIJ after integration by parts. Finally, wheng
=yIyJ, we find

−E dxH ]2

] xI ] xJ
dsxdJe−x·B·x = 2BIJ. sA8d

We should stress again that these results have been derived
without making the assumption thatQ, and soB, is nonsin-
gular. So, in summary, we have

kab
j svdâc

ks− vdl = iG bc
jk svd sA9d

and

kab
j svdac

ks− vdl = 2Bbc
jk svd. sA10d

APPENDIX B: INVERSION OF THE MATRIX G−1

From Eq.(47) we have that

G−1sk,vd = 1 r0k
2 ir 1km 0

ir 1km r3kmkn − r4k
2dmn ir 2km

0 ir 2km r5k
2 2 , sB1d

where the constantsr0,r1,… ,r5 are given by

r0 = − iv8, r1 = c1,

r2 = c2, r3 = c3,

r4 = + iv8 + c4, r5 = − iv8 + c5. sB2d

Herev8=v /k2 and the constantsc1,… ,c5 are given by Eq.
(48).
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From the symmetry properties of the system, we expect
that the inverse of Eq.(B1) will have the form

Gsk,vd = 1 s0 is1km s6

is1km s3kmkn − s4k
2dmn is2km

s6 is2km s5
2 , sB3d

where the constantss0,s1,… ,s6 are to be determined in
terms of the constantsr0,r1,… ,r5.

By direct multiplication of Eqs.(B1) and (B3) we can
verify that Gsk ,vd does indeed have the form given by Eq.
(B3), and that the constantss0,s1,… ,s6 are given by

r0s0k
2 − r1s1k

2 = 1,

r1s0 + sr3 − r4ds1k
2 + r2s6 = 0,

− r2s1 + r5s6 = 0, sB4d

r4s4sk2d2 = 1,

r0s1 + r1ss3 − s4d = 0,

r1s1 − sr3 − r4ds3k
2 + r3s4k

2 + r2s2 = 0,

r2ss3 − s4d + r5s2 = 0, sB5d

and

r0s6 − r1s2 = 0,

r1s6 + sr3 − r4ds2k
2 + r2s5 = 0,

− r2s2k
2 + r5s5k

2 = 1. sB6d

This set of 10 equations reduce to

s1 = −
r1r5

D
s0, s2 = −

r0r2

D
s0,

s4 − s3 = −
r0r5

D
s0, s6 = −

r1r2

D
s0, sB7d

with

k2sr0s0 − r1s1d = 1, sk2d2r4s4 = 1,

k2sr5s5 − r2s2d = 1, sB8d

whereD=r2
2+sr3−r4dr5k

2. From Eqs.(B7) and (B8) any of
the s0,s1,… ,s6 can be easily determined.

In Sec. IV we discuss an example for which we only need
to find s0. From the first equations of Eqs.(B7) and(B8) we
find this is given by

k2s0 =
r2

2 + sr3 − r4dr5k
2

sr0r2
2 + r5r1

2d + r0sr3 − r4dr5k
2 . sB9d

Writing this in terms of the physical constants defined by Eq.
(48) results in the expression fors0(=G11sk ,vd) given by Eq.
(51) of Sec. IV.
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